

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

IBA Dosimetry America Inc. dba Radcal 426 West Duarte Road Monrovia, CA 91016

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 01 July 2027 Certificate Number: AC-1553 TAR A ACCIENTAGE AND THE AND T

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002)

IBA Dosimetry America Inc. dba Radcal

426 West Duarte Road Monrovia, CA 91016

Ivan Chanca www.radcal.com

ivanchanca@radcal.com Phone: 626-357-7921

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 01 July 2025

Certificate Number: AC-1553 Certificate Expiry Date: 01 July 2027

Ionizing Radiation

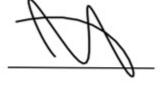
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dose, Diagnostic (40 to 150) kV (1.4 to 14) mm Al HVL	(1 to 100) mGy	3.3 % of reading	Comparison to (Anode/Filter W/Al, W/Cu) Internal Method
Dose, Mammographic (20 to 50) kV (0.15 to 1.4) mm Al HVL	(1 to 100) mGy	3.3 % of reading	Comparison to (Anode/Filter W/Al, W/Ag, W/Rh, Mo/Mo, Mo/Rh, Rh/Rh) Internal Method
Non-Invasive kVp, Diagnostic	(40 to 150) kVp	0.25% of reading	Comparison to Dynalyzer Internal Method (Anode/Filter W/Al, W/Cu)
Non-Invasive kVp, Mammographic	(20 to 40) kVp	0.35% of reading	Comparison to Dynalyzer Internal Method (Anode/Filter W/Al, W/Ag, W/Rh, Mo/Mo, Mo/Rh, Rh/Rh)

Ionizing Radiation

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Invasive kVp	(10 to 75) kV	0.16 kV	Comparison to Dynalyzer Internal Method
Anode Current Fluoro mode Rad mode	(10 to 20) mA (50 to 250) mA	0.14 mA 0.43 mA	Comparison to HP 34401A Multimeter Internal Method
Filament Current	2.5 A +/- 5 % (0.1 to 1) A	0.013 A 2 % of reading	Comparison to Shunt Internal Method
Dynalyzer Display	± (40 to 150) kV (25 to 1 000) mA	0.1 % of reading 0.083 % of reading	Comparison to HP 34401A Multimeter Internal Method
mAs	(0.001 to 9 999) mAs	0.15 % of reading	Comparison to 90M9 mAs sensor, HP 5315A Counter Internal Method
Gamma	(5 to 20) µGy/min (0.02 to 3) mGy/min 30 mGy/min	3.3 % of reading	Comparison to Reference Chambers, ¹³⁷ Cs, ⁶⁰ Co, Internal Method

Photometry and Radiometry

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Luminance ²	100 cd/m ²	3 % of reading	Comparison to Luminance detector
Illuminance ²	110 lux	3 % of reading	Comparison to Illuminance detector



Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. The nominal values listed are approximate.

Jason Stine, Vice President

This Scope of Accreditation, version 012, was last updated on: 30 June 2025 and is valid only when accompanied by the Certificate.

